
Harnessing the Wisdom of the Classes
Classsourcing and Machine Learning for Assessment Instrument Generation

Sam Saarinen

Brown University

Providence, Rhode Island, USA

Shriram Krishnamurthi

Brown University

Providence, Rhode Island, USA

Kathi Fisler

Brown University

Providence, Rhode Island, USA

Preston Tunnell Wilson

Brown University

Providence, Rhode Island, USA

ABSTRACT
Generating questions to engage and measure students is often chal-

lenging and time-consuming. Furthermore, these questions do not

always transfer well between student populations due to differences

in background, course emphasis, or ambiguity in the questions or

answers. We introduce a contributing student pedagogy activity

facilitated by machine learning that can generate questions with

associated answer-reasoning sets. We call this process Adaptive

Tool-Driven Conception Generation. A tool implementing this pro-

cess has been deployed, and it explicitly optimizes the process for

questions that divide student opinion. In a study involving arrays

in Java, this novel process: generates questions similar to expert-

designed questions, produces novel questions that identify potential

student misconceptions, and provides statistical estimates of the

prevalence of misconceptions. This process allows the generation

of quiz and discussion questions with less expert effort, facilitates

a subprocess in the creation of concept inventories, and also raises

the possibility of running reproduction studies relatively cheaply.

CCS CONCEPTS
• Social andprofessional topics→ Student assessment; •Com-
puting methodologies→ Machine learning;

KEYWORDS
Contributing Student Pedagogy, Instrument Development, Learning

Analytics

ACM Reference Format:
Sam Saarinen, Shriram Krishnamurthi, Kathi Fisler, and Preston Tunnell

Wilson. 2019. Harnessing the Wisdom of the Classes: Classsourcing and

Machine Learning for Assessment Instrument Generation. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (SIGCSE
’19), February 27-March 2, 2019, Minneapolis, MN, USA. ACM, New York, NY,

USA, 7 pages. https://doi.org/10.1145/3287324.3287504

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00

https://doi.org/10.1145/3287324.3287504

1 INTRODUCTION
Student conceptions and learning benefit from a diversity of assess-

ment instruments. In an ideal world, educators would have access

to a concept inventory (ci) for each topic they cover. A ci [8] is a val-
idated, robust, and interpretable instrument that pinpoints student

conceptions. It can examine the knowledge of students coming into

a course [7], measure their change across the course [7], and help

identify misunderstandings on the spot, e.g., in conjunction with

clickers [13]. Therefore, there is value to having a large number of

cis across the whole spectrum of computer science topics.

Unfortunately, generating a ci or similar instrument is painstak-

ing. Furthermore, a ci for a certain topic may not be very useful

in a particular instructor’s setting due to differences of covered

material, prior preparation, choice of programming language, and

numerous other factors. Finally, the number of actual cis in com-

puter science is fairly small [9] [14] and are relatively concentrated

in introductory computing, failing to cover large parts of the field.

Thus, cis appear to be difficult-to-attain holy grails.

Absent such a rigorous instrument, an instructor might have

to make do with a quiz of their design, which lacks any of the

properties listed above. Due to the expert blind spot [11] the quiz

may fail to cover some topics. It may also miss many mistakes that

students have, may not necessarily clearly line up mistakes with

misconceptions, and so on.

In this paper we attempt to find a happy middle between these

extremes. We define the process of Adaptive Tool-Driven Conception
Generation (atcg), which uses a pair of techniques in conjunction:

crowdsourcing to obtain a large number of contributors with

diverse views, but using students in a class; and,

machine learning to efficiently infer which contributions are

most robust.

It is instructive to compare the atcg process with a traditional ci

process. Both are shown in Figure 1, with ci on the left and atcg

on the right. The ci steps are clearly much more heavy-weight,

resulting in valuable instruments generated at great human (espe-

cially expert) expense. The atcg steps are cheap and benefit from

automation. They do not offer the same guarantees, but can be

applied in many settings easily.

This naturally raises the question, what is the quality of the

results from atcg? We present a first set of results in this direction.

First, we describe a tool, Quizius, that implements atcg (section 3).

We have used Quizius in three settings, two of which have nothing

remotely resembling a computing ci: higher-order functional pro-

gramming (which is used in many contexts, and even supported by

https://doi.org/10.1145/3287324.3287504
https://doi.org/10.1145/3287324.3287504

the Snap! block programming language), and quantifier use in an

upper-level course on mathematical logic in computer science. Due

to space limitations we will focus on the third: generating an instru-

ment for arrays in a Java CS2 course. We pick this because we can

compare the result against an existing ci [9]. Perhaps somewhat sur-

prisingly, the atcg output fares quite positively (section 4), showing

that this process has potential and is worth studying further.

Due to space requirements, we cannot include the full details here.
A repository containing relevant documents is available at http://
cs.brown.edu/research/plt/dl/quizius-2019/ . Additionally, the Web-
hosted Quizius tool is available (with a demo) at www.quizi.us, which
other instructors are welcome to use to generate instruments for their
courses.

2 RELATEDWORK
Concept Inventories in Computer Science. Taylor et al. [14] pro-

vide a survey of the concept inventory efforts in computer science.

They acknowledge that these are expensive to run due to the strong

validation demands. In this paper we focus specifically on the in-

strument of Kaczmarczyk et al. (2010), based on extensive student

interviews on topics validated by experts as important and difficult

for beginning programming students, resulting in 16 questions,

with most referencing snippets of Java code. We focus on the array

portion of it, which is represented as four questions in Figure 3

(reproduced here with permission).

Contributing Student Pedagogy. atcg can be viewed as a form of

Contributing Student Pedagogy (csp) [6]. This literature suggests

that writing questions and answering other students’ questions has

a positive effect on course outcomes. atcg has most of the attributes

of a csp, though simply generating an instrument provides only

limited opportunity to “value the contribution of others”, which

for now has to be done through other channels. (atcg also shares

elements with action research [2], including a focus on action and

reflection, and students as the main driver of scope.)

Quizius shares much with the csp system PeerWise [3], but:

• When answering questions in our system, all answers are

free-response so that the student answers will be unbiased.

• Rather than using student ratings of problem difficulty and

usefulness, we empirically measure the informativeness of

each question by using machine learning to examine the

diversity of answers and optimize answer collection.

• After Quizius has run, an expert curates the most informa-

tive contributed questions for the purpose of creating an

instrument, whereas no such engagement is necessary with

PeerWise, where the activity is the goal in itself.

Bandit Processes and Machine Learning. To construct a quality

instrument, we need robust questions. But measuring robustness ac-

curately requires collecting responses from many students for that

question. Additionally, out of consideration both for the students

and the quality of data, we would like to not waste students’ time

on questions that are not likely to be interesting. One approach

is to continually estimate the likelihood that a question is inter-

esting, and prioritize data collection for questions that are already

suspected to produce interesting responses. But we should not pre-

maturely rule out a question because the first few responses were

all the same (suggesting the question is uninteresting).

The problem of choosing an action (a question) out of many,

where taking the action produces some reward (we might get an
interesting response) and also gives us more information about the

action (we have a better estimate of how interesting the question
is), is a well-studied reinforcement learning problem called the

Multi-Armed Bandit. Efficient solutions have been derived that are

guaranteed to converge to selecting the best action as more data

are acquired ([1], for example), which we use in Quizius.

3 THE QUIZIUS TOOL
To facilitate atcg, we created the Web-based Quizius tool (Figures

4 and 5). It allows students to join classes, participate in quiz activi-

ties, write questions, answer questions with rationales, and review

question and answer distributions after the quiz ends. Quizius also

allows instructors to contribute their own questions, to review

the distribution of student responses, and to automatically grade

students based on participation and late-day use.

In addition to streamlining the data collection process, the tool

implements the critical machine learning step to filter out informa-

tive questions from the large pool, spending as few student answers

as possible on questions that are not very informative. Quizius

models picking questions for students to answer as a multi-armed

bandit problem. We define the reward (the objective we are seeking

to maximize) for the bandit problem as the likelihood that the next

response duplicates a non-majority answer. We believe this is a

good proxy for questions that elicit diverse student mental mod-

els (section 4.5). Note that the objective of the atcg method is to

identify misconceptions for the purpose of evaluating pedagogical

efficacy or tailoring instruction, not to place students on a scale of

ability, as in item response theory [10]. This necessitates a different

measure of question reliability than is typically used for so-called

high-stakes assessments.

Ordinarily, upper-confidence-bound algorithms (what we are

using to solve the multi-armed bandit problem) converge to select-

ing the single best option. Since we are trying to find not the best

question but rather a small set of questions, we select from among

the top

√
n questions, where n is the number of students who have

used the system so far.

One difficulty is that students may write the same answer in

different formats (e.g., “1000” versus “1,000”). We found it annoying

to manually cluster these. Therefore, after students answer a ques-

tion, they are shown previous representative answers and asked

whether theirs is the same as any of these. In effect, we ask the

students to cluster their answers themselves. This is easy for them,

and in practice catches most duplicates. Of course, on seeing the

previous answers, students may change their response (e.g., if they

feel they were mistaken). Thus, Quizius also lets them explicitly

mark that they are changing their answer. This switch provides a

very useful signal about student understanding that we have not

yet exploited.

When the student process is done, the expert is given: a collection

of questions; for each question, a collection of answers; for each

answer, a collection of rationales for that answer. The expert then

http://cs.brown.edu/research/plt/dl/quizius-2019/
http://cs.brown.edu/research/plt/dl/quizius-2019/
www.quizi.us

(1) experts set the scope of the assessment (using a Delphi

Process to choose important and difficult topics)

(2) students articulate mental models and experts identify

misconceptions (through interviews to find interpreta-

tions for student responses)

(3) experts develop questions (to distinguish mental models)

(4) experts validate the assessment (using statistical and

qualitative analysis across several trial administrations

to iterate towards robust and validated questions)

Figure 1: A traditional process for creating new cis. Steps
are taken from [5] and are based on recent practice in
several disciplines [4].

(1) experts write a prompt setting the scope for contributions

(2) students contribute questions

(3) students contribute answers and rationales (by answer-

ing other students’ questions and providing a brief justi-

fication)

(4) a machine learning algorithm prioritizes responses to

informative questions (in order to find robust questions)

(5) experts select questions for relevance (thus validating

the questions)

(6) experts identify misconceptions (by reviewing student ra-

tionales for each answer and interpreting the responses)

Figure 2: The novel atcg process.

selects the questions that appear most interesting to assemble into

an instrument. Examining the rationales gives insight into the

mental models responsible for the student responses. In practice,

we find that most answers arise for the same reason, but a careful

reading finds a few other “outlier” reasons. If atcg is being used to

help build a ci, such questions would have to be modified so that

different (mis)conceptions do not result in the same answer.

The atcg protocol has a bootstrapping problem: What questions

do the first students answer? Quizius permits multiple options: let

them simply finish early, or use pre-populated questions. The latter

may be various sources: instructor-provided, from an existing ci, or

even from previous iterations of using Quizius (e.g., if the process is

re-run across years—which is what we did in our study in section 4).

4 A COMPARATIVE STUDY
We now compare an atcg-generated instrument for CS2 Java arrays

(the generated instrument), against Kaczmarczyk et al.’s ci (the

expert instrument). G1-G6 in Figure 6 show the student-generated

questions. At a high level, we find:

• The generated instrument contains most of the same topics

and distractors as the expert instrument.

• The generated instrument misses some of the content of the

expert instrument; we conjecture why this is so.

• The generated instrument contains array use topics—and dis-

tractors for them, alongwith explanations ofmisconceptions—

not included in the expert instrument.

While performing this comparison, we also identify possible points

of confusion in the expert instrument.

4.1 The Study Population and Iteration
We generated this instrument from two iterations of a CS2 class at

a mid-size competitive private research US university. Although

the course covered algorithms and data structures typical of CS2,

it was also a first course using Java and a first course with object-

orientation (the students had previously studied functional pro-

gramming). Each time, the study was run midway through the

course, after students had completed a lab assignment on each

of objects and arrays. Just over 120 students participated in each

iteration of the study, and we note (based on results from an en-

try survey) that less than half of these students had high school

programming experience in Java.

The study was structured as an online homework assignment,

and students were given a week to complete it. The first time the

study was run, students were required to write one question (con-

sisting of a short program in Java whose printed output demon-

strated something they considered interesting about arrays; Figure

4 shows an example prompt), then to answer 15 questions written

by other students in free-response style (to predict the printed out-

put of the written programs without running them). They were

also asked to answer the 4 array-related questions from the expert

instrument. Figure 3 shows their counts for each answer in brackets;

note that many answers were chosen by no students.

In the second iteration, we seeded the system with contributions

from the previous year. We note that we observed qualitatively

similar distributions of mental models between the two years. To

reduce student effort, we made question submission optional (23

out of 128 students submitted one voluntarily anyway). Because of

improvements to the question allocation algorithm and a tighter

semester schedule, we only asked them to answer 10 questions.

Section 4.6 gives more results on engagement and student time.

All questions and responses in Figure 6 are student-generated; the

responses are all from the second iteration of the study.

4.2 Similar Questions — Indexing and Length
To begin, we note that both the generated and the expert ques-

tions contain questions involving indexing (is Java 1-indexed or

0-indexed) and array length (E1 and E2 in Figure 3 (expert instru-

ment) and G1, G2, G4, and G7 in Figure 6 (generated instrument)).

We discuss 1-indexed misconceptions quantitatively in Section 4.6.

4.3 Missing Questions — Memory and Type
Although there is a diversity of questions in the generated instru-

ment, we note that there are no questions about memory allocation

or type of an array object similar to E3 and E4 (Figure 3). We conjec-

ture that this was precluded by the prompt used in this study, which

required students to write a short Java programwhose output would

be printed. We consider it likely that most CS2 students do not have

access to the reflection capabilities necessary to phrase such ques-

tions as Java programs. Perhaps if given a different prompt, students

might write questions regarding type or memory allocation, but it

is also possible that a less-structured activity would be harder for

students. Thus, an open-ended ci interview offers possibilities that

a closed, computer-based process may make more difficult.

E1. What should the values of x and y be, in order to fill
all elements of the following array with values of -1? [Dis-

tractors are based on thinking that arrays start at index 1 and/or a for loop stepping

through an array will need to go until < the array’s length - 1]

int[] myArray = new int[10];
int i;
int x;
int y;
for (i = x; i < y; i++) {

myArray[i] = -1;
}

(a) x = 1, y = the length of myArray [1x]

(b) x = 0, y = the length of myArray [109x]

(c) x = 1, y = the length of myArray - 1 [0x]

(d) x = 0, y = the length of myArray - 1 [22x]

E2. Howmany elements are in myArray? [Distractors are based

on thinking that an array’s length is off by 1 or equal to the number of letters in

the array’s name]

(a) 7 [0x]

(b) 9 [1x]

(c) 10 [124x]

(d) 11 [0x]

E3. Which of the following answers most accurately de-
scribes the parts of the declaration of myArray? [Distractors

are based on thinking the type of an array is just an array or a general object

and/or declaring the length of an array instead sets the first element or all ele-

ments in the array to the value of the length] [remove answer e for non-Java

languages]

int[] myArray = new int[5];

(a) type is an integer array, length is 5 [124x]

(b) type is an array, each element has a value of 5 [0x]

(c) type is an integer array, each element has a value of 5 [0x]

(d) type is an integer array, the value of the first element is 5 [0x]

(e) type is an object array, the constructor is passed a value of 5 [2x]

E4. Which of the following answers most accurately de-
scribes the memory allocation of myArray in E3? [Distrac-

tors are based on thinking memory is not allocated for the elements in the array

or only the 1st element or plus an extra element]

int[] myArray = new int[5];

(a) memory is allocated for 6 spaces [7x]

(b) memory is allocated for 5 spaces [120x]
(c) no memory is allocated [0x]

(d) memory is only allocated for the first element [0x]

Figure 3: Four questions from the expert instrument. Out of the
16 total questions, these related somehow to arrays. Questions, an-
swers, and interpretations (mental models) are from Kaczmarczyk
and collaborators (private correspondence, extending [9]). Answers
are followed by the number of our respondents who selected that
answer. Note that not all respondents answered all questions.

4.4 Novel Questions — Assignment, Aliasing,
and Equality

Finally, we note that there are a number of concepts tested by the

generated instrument that are not present in the expert instrument.

For example, G1 (Figure 6) involves nested arrays, G3 tests aliasing

after assignment of one array to another, G4 involves mutation of an

array passed to a method, and G5 and G6 test array equality. These

are all concepts that are not addressed by the expert instrument.

The authors of this paper were surprised at some of the things

students thought to write questions about, and we conjecture that

student-authored questions may help to get beyond expert blind

spots. In particular, G2 (which reveals a mutation and aliasing

misconception—this is discussed in Section 4.6) is not a question

that occurred to us.

Figure 4: The Question Writing Interface for students.

Figure 5: TheAnswerGrouping Interface for students. After giving
a free response answer and a brief rationale, students are taken to
this screenwhere they either combine their answerwith an existing
group, or indicate that their answer is different from the others.

4.5 Novel Mental Models
This study allowed us to identify new mental models related to

multiple indexing, equality comparison, and initialization of arrays.

Additionally, by analyzing over a hundred student responses to

expert instrument question E4 (Figure 3), we identified a newmental

model relative to those previously identified: one student believed

that 6 spaces were allocated for a new int [5], because they were

aware that Java caches the length of an array as an integer, and

The provided Position class could be used freely:
public class Position {

public double x = 0, y = 0;
Position(double x, double y) {

this.x = x;
this.y = y;

}
}
G1.
public class Interesting {

public static void main(String[] args) {
int[][][][][] arr = {{{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}},

{{{9, 10}, {11, 12}}, {{13, 14}, {15, 16}}}},
{{{{17, 18}, {19, 20}}, {{21, 22}, {23, 24}}},

{{{25, 26}, {27, 28}}, {{29, 30}, {31, 32}}}}};
System.out.println(arr[1][1][1][1][1]);

}

}

(a) 32 [24x]

(b) 1 [9x]

(c) 16 [4x]

(d) {3,4} {11,12}, {19,20}, {27, 28} [2x]

(e) {{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}
{{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}
{{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}
{{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}
{{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}
[1x]

(f) illegible answer in console [3x]

(g) other [10x, including 30, 28, 12, 14, and 31]

G2.
public class Interesting {

public static void main(String[] args) {
int x = 3;
int[] test = {x,1,1,1};
x = 1;
System.out.println(test[0]);

}
}

(a) 3 [42x]

(b) 1 [8x]

G3.
public class Interesting {

public static String posString(Position p) {
return "(" + p.x + ", " + p.y + ")";

}
public static void main(String[] args) {

Position[] whatIsJava = new Position[5];
Position[] otherArray = whatIsJava;
otherArray[4] = new Position(5.5, 2.2);
System.out.println(posString(whatIsJava[4]));

}
}

(a) (5.5, 2.2) [23x]

(b) null [14x]

(c) error [10x]

(d) (0, 0) [7x]

(e) other [2x]

G4.
public class Interesting {

public static void reverse(int[] input) {
int lastPlace = input.length - 1;
int middlePlace = input.length / 2;
for (int x = 0; x <= middlePlace; x++) {

int temp = input[x];
input[x] = input[lastPlace - x];
input[lastPlace - x] = temp;

}
}
public static void main(String[] args) {

int[] arr = { 2, 16, 8, 42, 89 };
reverse(arr);
System.out.println(arr);

}

}

(a) [89, 42, 8, 16, 2] [24x]

(b) Some memory address [19x]

(c) {89, 42, 8, 16, 2} [7x]

(d) other [4x]

G5.
public class Interesting {

public static void main(String[] args) {
int[] first = {1, 2, 3, 4};
int[] second = {1, 2, 3, 4};
System.out.println(first==second);

}
}

(a) false [31x]

(b) true [11x]

(c) error [10x]

G6.
public class ArraysExample {
public static void main(String[] args) {

Position[] array1 = new Position[2];
Position[] array2 = new Position[2];

Position posn1 = new Position(2.5, 3.5);
Position posn2 = new Position(2.5, 3.5);

array1[0] = posn1;
array1[1] = posn2;

array2[0] = posn2;
array2[1] = posn1;

System.out.println(array1.equals(array2));
}

}

(a) False [39x]

(b) true [10x]

(c) Error [2x]

(d) other [3x]

G7. [Note that Quizius ranked this question as having low information (limited diversity

in answers). We include it here for comparison with answers to G1.]

public class Interesting {
public static void main(String[] args) {
try {
Integer[] intArray = new Integer[] {1, 2, 3, 4, 5};
System.out.println(intArray[5]);
// print out the 5th element of the array

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("intArray does not contain an element at index 5");
}

}
}

(a) “intArray does not contain an element at index 5” [53x]

(b) Error [2x]

Figure 6: A selection from the most informative questions generated using atcg. Each question is a program, whose output
students were asked to predict. Each answer is followed by the number of respondents who agreed with it. Some answers are
combined as “other” for brevity.

reasoned that that was allocated in addition to the 5 spaces for

the 5 elements of the array. Although it is a rare mental model in

our population, this suggests a refinement to that question. This

mental model may have been lost in the much smaller sample size

for which it is feasible to conduct extensive interviews.

4.6 Quantitative Analysis
Space precludes a detailed analysis of the questions in the two

instruments, and student responses to them (and the mental models

they reveal). However, we enumerate some salient points:

• The expert instrument (Figure 3) is able to detect up to 12

misconceptions (either or both of 2 for E1, 3 for E2, 4 for E3,

and 3 for E4) related to arrays. Our population exhibited a

ceiling effect on the expert instrument, however, as only 5 of

those misconceptions appeared in our population, and the

majority of students got all the ci questions correct. (Figure

3 contains detailed incidence counts.) The generated instru-

ment (considering only programs 1-6, as presented in Figure

6) detected 13 misconceptions in our student population.

• The top-ranking generated questions are ones that produce

a spread of student responses. Although this spread is not

always due to a difference in mental models (G4 in Figure 6),

other questions capture misconceptions in a nuanced way.

In particular, on G1 on the generated instrument, 9 out of the

53 students exhibited a 1-indexing misconception (answer b).

Interestingly, this 1-indexing misconception did not occur

on a student-generated question involving a 1-dimensional

array (G7), and on E1 from the expert instrument (Figure

3), only one student chose an answer consistent with a 1-

indexing misconception. This is likely an instance of the

well-known phenomenon of fragile student knowledge [12].

• For our student population, the generated questions detected

misconceptions more frequently than the ci questions. There

are many possible reasons for this, which we do not have

space to discuss further. We do find interesting mental mod-

els in answers that claim a program is erroneous. We spec-

ulate this may not happen as frequently if students believe

the programs were written by an expert.

• We measured the amount of time each student spent on the

question authoring page and on the answer writing page,

which is a reasonable proxy for student time, although some

large outliers (one answer took 8.8 hours) suggest that stu-

dents may have left the page open while doing other things.

Themedian time to write a questionwas just over 11minutes,

and the median time to answer a question was 1 minute and

17 seconds. Furthermore, just over 30% of our students vol-

untarily answered more questions than required to complete

the homework assignment—some by a significant margin,

which suggests some of them may even have found this

process educational or fun.

Across all students, about 90 hours of student time were

used in total. About 8 expert hours over the course of a

week were used to design and refine the protocols for the

study, and about 15 expert hours over the course of two

weeks were spent on selecting the relevant questions and

interpreting student rationales. In total wall clock time, the

second iteration of this study took 4 weeks to run end-to-end,

which is substantially faster than any ci-creation process.

5 DISCUSSION
It is not clear whether it is better to ask students to write questions

before, during, or after answering the questions of other students.

Having them write questions before answering any occasionally

results in questions that are nearly isomorphic, although the written

questions are unbiased by the work of other students. Having them

write questions during or after allows students to benefit from the

examples they have seen, and deliberately write different questions,

but it may artificially constrain their responses based on what they

have seen; more studies will need to be done to evaluate the relative

strength of these effects quantitatively.

We found that some students submitted questions unrelated to

arrays in Java, although they did produce a broad spread of answers.

(In particular, a question about object equality comparison left

even the authors searching carefully through the Java language

specification to understand the correct answer.) Although the tool

could be altered to allow students to flag off-topic questions, the

instructor may wish to keep those questions that reveal a spread of

mental models, even if they are off-topic.

Though we did not encounter instances of abusive use, it is also

important for users to be able to flag offensive content (as they

can in Quizius). Malicious users might write an abusive answer

that others would have to read; more subtly, they might submit

a program whose output is offensive, which everyone else would

then be forced to type. Working in a graded course, rather than on

the open Internet, probably helped us avoid such incidents.

6 CONCLUSION
This paper presents atcg as an intriguing mid-point, and poten-

tial sweet spot, between the heavy-weight ci process and entirely

instructor-generated evaluation instruments. Augmenting instruc-

tor work with that of students can reveal a rich set of models,

working around expert blind-spots. In a comparative study, we

find that purely student-generated questions and answers, with

relatively little effort (and with some of the auxiliary benefits of

csp), can compare very favorably to ones generated with consid-

erable effort by a team of experts. Our tool, Quizius, helps run the

atcg process, presenting a Web interface and embodying a ma-

chine learning algorithm. We have already begun to apply atcg

in two other computing contexts, and we feel this process should

be applied to all of computer science (indeed, Quizius is not even

computing-specific), especially in areas where it may take a very

long time and considerable expense to cover with a ci.

ACKNOWLEDGMENTS
We are grateful to Lisa Kaczmarczyk for contributing questions from

an expert instrument. We thank Leo Porter and Daniel Zingaro,

as well as Mike Clancy and Cynthia Taylor, for their elucidating

conversations on Concept Inventories and for pointing us to action

research. This work was partially supported by the National Science

Foundation.

REFERENCES
[1] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The

nonstochastic multiarmed bandit problem. SIAM journal on computing (2002).

[2] Mary Brydon-Miller, Davydd Greenwood, and Patricia Maguire. 2003. Why

action research? Action Research (2003).

[3] Paul Denny, John Hamer, Andrew Luxton-Reilly, and Helen Purchase. 2008.

PeerWise: students sharing their multiple choice questions. In ICER. ACM.

[4] DL Evans, Gary L Gray, Stephen Krause, Jay Martin, Clark Midkiff, Branislav M

Notaros, Michael Pavelich, David Rancour, Teri Reed-Rhoads, Paul Steif, et al.

2003. Progress on concept inventory assessment tools. In Frontiers in Education.
IEEE.

[5] Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey Herman, Lisa Kaczmarczyk,

Michael C Loui, and Craig Zilles. 2008. Identifying important and difficult

concepts in introductory computing courses using a delphi process. ACM SIGCSE
Bulletin (2008).

[6] John Hamer, Quintin Cutts, Jana Jackova, Andrew Luxton-Reilly, Robert McCart-

ney, Helen Purchase, Charles Riedesel, Mara Saeli, Kate Sanders, and Judithe

Sheard. 2008. Contributing Student Pedagogy. SIGCSE Bull. (2008).
[7] Charles Henderson. 2002. Common concerns about the force concept inventory.

The Physics Teacher (2002).
[8] David Hestenes, Malcolm Wells, Gregg Swackhamer, et al. 1992. Force concept

inventory. The Physics Teacher (1992).
[9] Lisa C Kaczmarczyk, Elizabeth R Petrick, J Philip East, and Geoffrey L Herman.

2010. Identifying student misconceptions of programming. In SIGCSE. ACM.

[10] Frederic M Lord. 2012. Applications of item response theory to practical testing
problems. Routledge.

[11] Mitchell J Nathan, Kenneth R Koedinger, Martha W Alibali, et al. 2001. Expert

blind spot: When content knowledge eclipses pedagogical content knowledge.

ICCS.
[12] DN Perkins and Fay Martin. 1986. Fragile knowledge and neglected strategies in

novice programmers. In Empirical Studies of Programmers.
[13] Beth Simon, Michael Kohanfars, Jeff Lee, Karen Tamayo, and Quintin Cutts. 2010.

Experience report: peer instruction in introductory computing. In SIGCSE. ACM.

[14] C. Taylor, D. Zingaro, L. Porter, K.C. Webb, C.B. Lee, and M. Clancy. 2014. Com-

puter science concept inventories: past and future. Computer Science Education
(2014).

	Abstract
	1 Introduction
	2 Related Work
	3 The Quizius Tool
	4 A Comparative Study
	4.1 The Study Population and Iteration
	4.2 Similar Questions — Indexing and Length
	4.3 Missing Questions — Memory and Type
	4.4 Novel Questions — Assignment, Aliasing, and Equality
	4.5 Novel Mental Models
	4.6 Quantitative Analysis

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

