Applying Prerequisite Structure Inference to Adaptive Testing

Sam Saarinen
Brown University
Providence, Rhode Island
sam_saarinen@brown.edu

ABSTRACT

Modeling student knowledge is important for assessment design,
adaptive testing, curriculum design, and pedagogical intervention.
The assessment design community has primarily focused on con-
tinuous latent-skill models with strong conditional independence
assumptions among knowledge items, while the prerequisite discov-
ery community has developed many models that aim to exploit the
interdependence of discrete knowledge items. This paper attempts
to bridge the gap by asking, "When does modeling assessment item
interdependence improve predictive accuracy?" A novel adaptive
testing evaluation framework is introduced that is amenable to
techniques from both communities, and an efficient algorithm, Di-
rected Item-Dependence And Confidence Thresholds (DIDACT),
is introduced and compared with an Item-Response-Theory based
model on several real and synthetic datasets. Experiments suggest
that assessments with closely related questions benefit significantly
from modeling item interdependence.
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1 INTRODUCTION

This paper attempts to bridge the gap between two communities
of knowledge-modeling research. The paper is specifically built
around the question, "When does modeling assessment item in-
terdependence improve predictive accuracy?" This introduction
will provide context for the paper and distinguish this work from
related work in the literature.
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1.1 We are Discovering Prerequisite Structures

Although this paper uses an adaptive testing evaluation framework,
the techniques are most closely related to the Prerequisite Inference
literature. There are many educational uses for identifying depen-
dencies between topics, concepts, or questions. These uses include
defining constraints on curricular order (what order should topics
be taught in to maximize student learning) [4], providing course
recommendations [2] , designing adaptive testing systems (and in-
ferring student knowledge) [12], and efficiently validating new test
questions. Although the exact form of such relational structures
has varied across the literature, this paper will call all such devices
dependency maps. Prior work has attempted to deduce such de-
pendency maps from a variety of data sources using a variety of
techniques and evaluation methods. See Table 1 for a summary.

This work is motivated by the problem of detecting student
knowledge efficiently using student-sourced questions, a promising
approach to scalable assessment generation and adaptation [17].
Due to minimal expert oversight, there is no ground-truth source of
skill-labelings for questions assessing the same skill or knowledge,
nor is there a ground-truth dependency map to validate against (so
it cannot be used to measure performance of algorithms designed
for this problem). Furthermore, because the student-contributed
questions are often written without global awareness of the other
questions available, many questions are related or equivalent. This
motivates an adaptive testing system that attempts to minimize the
number of questions needed to accurately predict student perfor-
mance. (Note that even with expert-authored questions, experts
may wish to validate their own dependency maps empirically, or
to save themselves the effort of creating one manually.)

This paper aims to learn a dependency map on the basis of ex-
plaining (or predicting) the observed data, so the works closest to
this paper are the attempts to use Bayesian inference to infer pre-
requisite relationships among latent skills, given the mapping from
assessment questions to required skills [4, 7, 10]. Although those
approaches are promising and able to reproduce small artificially-
generated or expert-defined structures, they suffer from two pri-
mary limitations. First, the ground-truth mapping from questions
to measured latent skills is not available in the problem domain
considered here. Second, Bayesian inference methods are generally
both approximate and slow, limiting their scalability. This paper
considers structures with an order of magnitude more nodes than
those studied in prior work.

The algorithm explored here, DIDACT, also bears resemblance
to the prior Probabilistic Association Rules Mining work [8]. The
work presented here differs primarily in that this paper explicitly
considers the problem of predicting or filling in values in the dataset,
and the algorithm has been generalized to allow item equivalence.
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Table 1: Approaches to prerequisite map inference are grouped broadly by approach to validation, then by exact validation
method, then by source of data. This paper introduces a new evaluation framework for dependency maps and evaluates a

novel technique inspired by several existing ones.

Data Source ‘ Validation Method ‘ Technique ‘ Reference ‘
Expert (or Simulated) Dependency Map Recovery
Student Answers to Test Questions | Plausible Structure Recovery Expectation Maximization on Pairwise Rela- | [4]
tionships
Pairwise Interaction Features Human Evaluation Various Regression Algorithms (3, 6]
Course Enrollment and Grades Reproducing Existing Course Pre- | Ranking by Conditional Success Ratios (2]
requisites
Probabilistic Student Knowledge | Rediscovery of Simulated and Ex- | Probabilistic Association Rules Mining (8]
States from Test Questions pert Structure
Student Answers to Test Questions | Rediscovery of Simulated and Ex- | Bayesian Model Selection [7,10]
pert Structure
Data Self-Supervision
Student Answers to Test Questions | Leave-One-Out Cross Validation Structural EM for Bayesian Model Selection [7]
Student Answers to Test Questions | Data Reconstruction Error Restricted Bayesian Inference (DIDACT) this paper

There is also a fascinating body of work into Dependency Map
learning from natural language sources (Adorni et al. [1], for ex-
ample), but those techniques require a large text corpus (such as a
textbook), are not designed for relating assessment items, and the
evaluation method presented here is fundamentally different.

There is also work on predicting student responses using su-
pervised learning [11], but that work only applies to predicting
responses to a fixed set of questions given responses to a different
fixed set of questions, making it inapplicable for either detecting
prerequisite relationships or facilitating adaptive testing.

Finally, we also note that the methods presented here exploit
algorithms on directed acyclic graphs (DAGs) to explicitly simplify
the output and enforce global constraints in the dependency map,
a technique that has not appeared in the prior literature.

1.2 We do NOT use a Q-Matrix

Many approaches to inferring dependency maps aim to simplify
the problem through use of a Q-matrix, which maps a number of
assessment items to a smaller number of latent knowledge variables.
Q-matrix Q has Q;; = 1if question i uses skill j, and 0 otherwise. If
an exam is built by experts, a Q-Matrix may be hand-coded. In our
setting however, we do not use a Q-matrix. Instead, we design an
inference algorithm that scales well to large numbers of assessment
items.

1.3 We are Doing Adaptive Testing

Computer Adaptive Testing (CAT), or simply Adaptive Testing, has
a rich history in the literature, dating back to 1985 (Weiss [20]).
In recent years, many innovations in Knowledge Modeling have
been carried over to an Adaptive Testing setting [16]. We continue
this tradition, but with a novel evaluation framework for adaptive
testing that provides rich information around the tradeoff between
data-efficiency and accuracy.

1.4 'We compare to Item Response Theory

Item Response Theory (IRT) assumes that students have skills which
influence their question answers. In Item Response Theory, the
simplest model is known as the 1-parameter logistic model, or the
1PL model. In a 1PL model, the ith learner is modeled by a single
parameter 0; called ability or proficiency, and the question/item
is modeled by a difficulty parameter d;. If we add a parameter a;
that specifies the discrimination ability of the question, the model
is known as a 2PL model. If we incorporate a parameter c; that
specifies the likelihood of a guess, we have a 3PL model. Each
question in an IRT theory has an associated item response function,
often a logistic function. The difficulty, discrimination, and guess
parameters reshape the logistic function as follows:
1-¢j
PO =it a4

If the ability and difficulty parameters are allowed to be multi-
dimensional, the framework is called Multi-Dimensional Item Re-
ponse Theory (MIRT). At the time of writing, no general framework
for MIRT model learning operates directly from student response
data with no expert input [5].

Plajner [15] introduces a straightforward method for building
CAT models with IRT. They use empirical bayesian estimates of the
latent parameters based on answers, and compute the information
provided by asking a given question, consequently picking the
question that maximizes the information at each timestep. The use
of IRT in adaptive testing is well-established [18].

Although it should now be apparent how IRT and Dependency
Map inference can be both used within an adaptive testing frame-
work, it may be beneficial to clarify their differences. Fundamentally,
IRT is rooted in the assumption that there are (at most) a small
number of latent continuous skills that independently predict cor-
rectness on each item. This assumption of conditional independence
among the items given the skills is very elegant, allowing efficient
model inference and preserving the simplicity of the model. In con-
trast, Dependency Map inference is fundamentally premised on the
idea that assessment items exhibit interdependence.
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1.5 We are NOT Doing Knowledge Tracing

Knowledge tracing is the task of modelling student knowledge over
time to accurately predict future student performance [14]. When
systems can accurately model student knowledge, content can be
suggested to students based on individual needs. In the literature it
is common to use a Bayesian model of the knowledge of a student,
updating learner’s latent knowledge using a hidden Markov model
as learners interact with exercises [19]. Recent models propose
using recurrent neural networks to predict student responses based
on their past activity [13, 14]. The fundamental difference between
knowledge tracing (KT) and CAT is that while in KT system de-
signers are trying to maximize the student’s knowledge through
exercises that teach concepts, CAT is focused on testing a student’s
knowledge, as accurately and efficiently as possible. This is not to
say that the two tasks are unrelated—both KT and CAT use models
of student knowledge. For example, the use of IRT and MIRT models
for knowledge representation, Bayesian networks, and Q-Matrices
are used throughout the both the KT and CAT literatures.

1.6 Contributions

This paper has three primary contributions. First, a quantitative
evaluation framework for adaptive testing is introduced that al-
lows control of the tradeoff between data efficiency and accuracy
through a settable parameter y. Second, a fast algorithm for mining
dependency relationships and doing adaptive testing is presented.
This algorithm does a restricted form of Bayesian reasoning that
achieves high accuracy, brief runtime, and high data-efficiency.
Third, experiments on real and simulated data suggest that model-
ing of item interdependencies has a significant impact on predictive
power when the assessment is narrow in scope.

2 VALIDATION METHOD

The value of a model should ultimately be measured by how well
it predicts unseen/new data. This perspective is inherently cap-
tured by the adaptive testing problem, where the goal is to ask
questions until the student’s responses to the remaining items can
be predicted with high accuracy. There are two primary objec-
tives involved in adaptive testing systems. The first is efficiency—to
minimize the number of questions asked. The second is robust-
ness. Adaptive testing suffers from asymmetrical error conditions
whereby asking unnecessary questions is much less expensive than
mislabeling student knowledge of an item. These two kinds of error
are difficult to compare directly in terms of, for example, total cost
in student time, so we use a proxy condition: All inferred student
responses should be provided with at least some minimum accu-
racy threshold denoted y. For example, y = .95 indicates a model
should only predict the student’s response to a question if it is at
least 95% likely to get it right. This requires the model to both have
high accuracy and to know that it has high accuracy. This setup
motivates the following active-learning-style problem:

(1) Train on a dataset of previous student correctness scores on
a variety of assessment items, possibly with missing values.

(2) For each (test set) student, repeatedly select a question to
ask and then receive a response, or issue a stop command.

(3) After the stop command, predict the student’s responses to
any remaining questions.
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(4) For every predicted response that is correct, give score 1. For
every predicted response that is incorrect, give score — 11/

This penalty gives expected score 0 when the algorithm has

exactly confidence y. Note that questions that were asked

(not predicted) receive score 0.

This scoring scheme is simple and allows traditional train/test splits,
cross validation, or online learning evaluations. It is in the best
interest of the tested algorithm to only predict responses that it
believes it will get correct with probability greater than y and to
ask the question if its confidence is less than y. If its confidence is
exactly y, guessing or asking yield the same score in expectation.

This metric allows us to explore the tradeoff between data effi-
ciency and accuracy by adjusting y. With y equal to 0, the score is
the number of questions that were inferred correctly without being
asked. If the score is normalized by the total number of questions,
this is a fairly direct measure of the “efficiency” of the adaptive test-
ing system — how many questions (on average) the system is able
to predict responses to without asking them. Here, the baseline to
compare to is an algorithm that just guesses that each student will
do what the majority do on each item (get it correct or incorrect).
This baseline asks no questions of new students, so the only way to
improve over its score is by using responses to some questions to
improve the accuracy of predictions made on the rest (by modeling
student ability or inter-question relationships, for example). Note
that it is difficult to achieve scores near 1 when there are only a
small number of assessment items, due to the proportional cost
of gathering information. However, as the number of assessment
items grows, the opportunities for modeling to accurately predict
responses to a large fraction of the items increases.

At high y, the model is primarily concerned with accuracy; with
such a steep penalty for wrong predictions, the model will be willing
to ask many questions in order to ensure that each remaining
inference is correct. Here, the baseline is an algorithm which asks
all questions, achieving score 0 every time. While this baseline is not
very efficient, it is perfectly accurate, and so suffers no penalties. The
danger for algorithms based on models is that the models must not
over-estimate their confidence of a student’s response - otherwise
they stand to suffer large negative penalties for incorrect guesses.
At y = 1, there is an infinite penalty for even a single incorrect
inference, so any score above 0 is highly impressive. Note that if
questions can be guessed (or mistakes made) with some probability
€ (the maximum noise in the observation), models should simply
ask most questions when y > 1 — €. Along this line of thinking,
the most practically relevant range on these plots is the range from
% < y £ 1 — €. In this range, there will be questions for which
majority rule is no longer a safe guessing strategy, but careful
modeling still has a chance of inferring responses accurately. In
terms of interpretation, y = % is the point at which asking a single
question has about the same cost as simply teaching that content.

3 A FAST DISCRETE MODEL

Bayes Nets are quite general and very data efficient, but can be
computationally slow to learn and do inference in as the number of
variables grows. This paper therefore presents a discrete model that
balances the flexibility of interdependence modeling with the speed
of inference under assumptions of independence. The algorithm
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considers the influence of observed responses on a given item as
independent, subject to the learned dependency map. In other words,
redundant evidence (from a prerequisite of an observed prerequisite,
for example) is filtered out, as is irrelevant evidence (evidence from
items not transitively connected to the query item by the depen-
dency map). This combines some of the best of Bayesian Networks
(expressive capability and dependency modeling) with IRT (fast in-
ference due to independence assumptions). This algorithm is called
Directed Item-Dependence And Confidence Thresholds (DIDACT).
Construction of the dependency map proceeds by 4 steps.

(1) Prepare statistics on all pairs of test items. How many stu-
dents are correct on both, only the first, only the second, or
neither?

(2) Sort prospective edges for the dependency map by the mu-
tual information between that pair of questions.

(3) For each prospective edge, determine if it is an equivalence
relation, prerequisite relation, or other.

(4) Add equivalence and prerequisite relations according to their
sorted order, using a DAG structure over equivalence classes
to enforce non-circularity of the dependencies.

For Step 3, a globally estimated guess parameter g is used to
construct a test for the different relations. Let a be the estimated
proportion of students who answer both questions incorrectly and
let b and ¢ be the estimated proportion who answered one question
correctly or the other, respectively. If, with probability at least y,

b> %a and ¢ > L q, there is no relation. If exactly one of the

g 1-g
inequalities is true with confidence greater than y, then there is a
directed relationship (one of the things can be known without the
other, but not the other way around). Finally, if neither is greater,

then the two are treated as equivalent.

Average Inference Time vs. Number of Items

—}— Bayesian Model
DIDACT

Average Inference Time (s)
22NN WwWw
o » o W o

o
«

4
o

1 2 3 4 5 6 7 8 9
Number of Items

Figure 1: Exact Bayesian Inference quickly grows in-
tractable, motivating the efficient DIDACT algorithm.

Doing inference with DIDACT is likewise straightforward. Given
a vector of previously observed answers:

(1) For each node x, construct a partial reduction (all observed
nodes with a transitive dependence on x that do not have
another observed node on any of their paths to x).

(2) Treat all observed variables as exerting independent influ-
ences on x. Take the product of their conditional likelihoods
for x = 1 and x = 0 (we use Bayesian pseudo-counts to pre-
vent probabilities of 1 or 0), multiply by the base answer rate
for x, and then normalize over the two possible outcomes.
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Finally, DIDACT uses a myopic active learning (item selection)
rule dependent on y—given its current predictions, see which ques-
tion will increase its expected score the most in the next round. If
the expected increase is non-positive, stop asking questions and
predict the responses to all of the remaining questions. Although
DIDACT is just one possible combination of dependency inference
and independence assumptions, the plots in Figures 1 and 2 show
that it is very fast and fairly accurate.

{Vlooodel Score vs. Required Confidence: FracSub Data - 5 of 20 Q's
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Figure 2: Although DIDACT is far from perfect, it still
achieves good performance on real data, and with a much
shorter runtime than exact Bayesian Inference.

4 EXPERIMENTAL RESULTS

In this section, the results of using an IRT-based model and using
DIDACT are compared. Python code to reproduce the experiments
in this paper is available online!.

4.1 We Use Human Data

Results below are based on two publicly available real-world datasets:
the FracSub dataset (Figure 3); and the SAT dataset (Figure 4). The

FracSub dataset includes graded responses from 536 students to

20 middle-grade math questions and was first published in con-
junction with [21].2 The SAT dataset consists of responses from

296 students to 40 questions across multiple subject areas, and was

first published in conjunction with [9], and is available through the

adaptive testing repository made available by Vie®, which we also

use for our IRT baselines.

4.2 Experiments show Benefits from Modeling
Interdependence

On the FracSub dataset (Figure 3), DIDACT and IRT begin with
very similar performance, but the increasing y shows that DIDACT
has more accurate estimates of the likelihood of inferred answers.
For convenience, a baseline algorithm is also plotted. The Base
Rate algorithm estimates the base likelihood (without seeing any
other answers) of each item being correctly answered. As long
as an item’s likelihood (or its complement) exceed y, that item’s
response is inferred. Otherwise, the item is specifically queried.

Uhttps://sam-saarinen.github.io/artifacts/
Zhttp://staff.ustc.edu.cn/ qiliugl/data/math2015.rar
3https://github.com/jilljenn/qna
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Model Score vs. Required Confidence: FracSub Data
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Figure 3: Adaptive Testing Performance subject to required
confidence threshold y on the FracSub dataset.

Model Score vs. Required Confidence: SAT Data

—— DIDACT
—0.75 IRT Model
—— Base Rate Model

score/|Q| with penalized guessing
o
°
S

0.0 0.2 0.4 0.6 0.8 1.0
gamma - required confidence

Figure 4: Adaptive Testing Performance subject to required
confidence threshold y on the SAT dataset.

DIDACT achieves significantly higher accuracy once the base rate
is no longer informative, although both models overestimate their
own accuracy, as revealed at y very close to 1.

In contrast, on the SAT dataset (Figure 4), the performance of
these two models are roughly equal. (If anything, DIDACT performs
slightly worse, although no statistically significant conclusion can
be drawn given the error bounds.) What accounts for the difference
in results between these two datasets? We note that the FracSub
dataset involves many questions that are closely related semanti-
cally, whereas the SAT dataset includes questions from multiple
unrelated subject areas. This suggests the following hypothesis:
on closely related questions, question inter-dependence violates
the conditional independence assumption of IRT, leading to worse
performance than when the questions are nearly independent.

To test this hypothesis, experiments were run on two synthetic
datasets. One is based on a prerequisite structure with very high
interdependence; 10 items are placed in a single chain of prereq-
uisite dependencies. (See Figure 5.) In the other dataset, (Figure 6)
40 items are placed in a large sparse DAG structure where many
items do not have any transitive relationship. The results align with
expectations. On the Chain Dataset, DIDACT performs excellently,
querying only 2-4 items (on the order of log, 10) across all levels
of y. This performance is possible only because DIDACT explicitly
captures the transitive dependence relationships between items.
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On the same dataset, IRT is forced to query many more nodes and
suffers from inaccurate probabilities (revealed as y approaches 1).
In contrast, both models achieve good (and nearly indistinguish-
able) performance on the Broad DAG dataset, where the conditional
independence assumption of IRT is a reasonable simplification of
the true structure of the data.

Model Score vs. Required Confidence: 1-Chain DAG

0731 \*\,\_‘\k,_
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~0.75 4 IRT Model
—}— Base Rate Model

score/|Q| with penalized guessing

-1.00

0.0 0.2 0.4 0.6 0.8 1.0
gamma - required confidence

Figure 5: Adaptive Testing Performance subject to required

confidence threshold y on a synthetic dataset where depen-
dencies form a single chain.

Model Score vs. Required Confidence: Broad DAG
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Figure 6: Adaptive Testing Performance subject to required
confidence threshold y on a synthetic dataset where depen-
dencies form a broad but connected DAG.

These results suggest two interesting findings: first, for closely-
related questions, models that are able to capture the interdepen-
dence of test items have higher predictive power; second, this phe-
nomenon may not be discoverable from data based on comprehen-
sive or broad assessments, because in these settings the two models
are indistinguishable.

5 LEVERAGING INTERDEPENDENT MODELS

Part of why IRT models (such as the Rasch model), have been so
popular over the last decades is their auxiliary uses based on in-
terpretation of the model. For example, questions can be ranked
based on how well they fit the model defined by the other ques-
tions (a form of internal validity and the basis of measures like
Cronbach’s Alpha). Students can be evaluated. And, questions (and
related topics) can be ordered by their difficulty, leading to a natural
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curriculum. The goal of this section is to illuminate how some of
these use cases can benefit from modeling the interdependence of
assessment items.

5.1 How to Make Exams More Reliable

Large assessments can often be made more reliable by removing
questions that have little relevance to the rest of the exam. In the
ideal of the adaptive test setting, the minimal number of questions
are asked to accurately predict responses to the remaining questions,
so a natural way of ranking items (represented as random variables
X;) is by the following:

RX;) = ) 1(Xi, X;),

J

where I(X;, Xj) is the mutual information between X; and X;. Note
that this score includes the amount of mutual information the
variable has with itself, which is just the entropy of the random
variable H(X;) = I(Xj, X;). It slightly favors questions that are
neither too easy nor too hard for most students.

Given a means of ranking questions, assessments can be designed
subject to budget constraints for a particular y. This goal can be
accomplished by adding questions in order of decreasing rank until
the mean score at y begins to decrease.

5.2 How to Evaluate Students

Student abilities can be represented as a vector indicating whether
the student has mastered each item. Given a dependency map, this
vector space has a partial ordering that captures possible learning
trajectories for each student. It also allows for fine-grained student
diagnostics - perhaps the student isn’t lacking practice, but specific
prerequisite knowledge that would allow them to succeed. Although
there are many possible ways to collapse the student mastery vector
into a single grade or score, the fine-grained vector may hold more
utility for practical classroom use.

5.3 How to Infer a Curriculum

Just as student ability vectors define a partial order over students,
the dependency map defines a partial order over content. By the
assumptions of the model, content appearing in the dependency
map cannot be mastered before the content it is dependent on. Thus,
all prerequisite topics should occur in a curriculum before the topic
that depends on them.

6 CONCLUSION

This paper provided empirical evidence that assessments involving
closely related items are likely to benefit from interdependence mod-
eling. To facilitate these experiments, a novel evaluation framework
was introduced that explicitly navigates the tradeoff between data-
efficiency and accuracy in adaptive testing. Additionally, a novel
algorithm for interdependence modeling, DIDACT, was introduced,
which achieves high performance while remaining computationally
efficient. Finally, these results were connected to related educational
problems, including assessment creation, adaptive pedagogy, and
curriculum design. These results can be applied directly in future
work expanding the use of dependency modeling in adaptive test-
ing, which may be of particular use when assessment items come
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from nontraditional sources or the pool of items changes over time.
Future work may consider how to extend these models to more
general models of assessment than binary correct/incorrect items.
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